当前位置:首页 > Deepseek最新资讯 > 正文内容

DeepSeek开源放大招:FlashMLA让H800算力狂飙!曝光低成本秘笈

5个月前 (02-24)Deepseek最新资讯267

【新智元导读】DeepSeek开源周第一天就放大招!FlashMLA强势登场,这是专为英伟达Hopper GPU打造MLA解码内核。注意,DeepSeek训练成本极低的两大关键,一个是MoE,另一个就是MLA。

就在刚刚,DeepSeek放出了开源周首日的重磅炸弹——FlashMLA。

这是DeepSeek专为英伟达Hopper GPU打造的高效MLA解码内核,特别针对变长序列进行了优化,目前已正式投产使用。

经实测,FlashMLA在H800 SXM5平台上(CUDA 12.6),在内存受限配置下可达最高3000GB/s,在计算受限配置下可达峰值580 TFLOPS。

开源地址:https://github.com/deepseek-ai/FlashMLA

当前已经发布的内容为:

对BF16精度的支持

块大小为64的分页KV缓存

团队在致谢部分表示,FlashMLA的设计参考了FlashAttention-2、FlashAttention-3以及CUTLASS的技术实现。

有网友对此表示,「DeepSeek王炸开局,FlashMLA是真正能加速AGI进程的」。

快速入门

首先,需要打开终端,输入下面代码安装setup.py文件:

这是一个基于Python的安装命令,用于编译和安装FlashMLA模块,确保其高效运行于特定硬件。

python setup.py install

基准测试:

这段代码是一个测试脚本,用于验证FlashMLA的功能和性能,并与PyTorch的基准实现进行对比。

python tests/test_flash_mla.py

使用方法:

下面是一段使用的示例代码。

from flash_mla import get_mla_metadata, flash_mla_with_kvcache

tile_scheduler_metadata, num_splits = get_mla_metadata(cache_seqlens, s_q * h_q // h_kv, h_kv)

for i in range(num_layers): ... o_i, lse_i = flash_mla_with_kvcache( q_i, kvcache_i, block_table, cache_seqlens, dv, tile_scheduler_metadata, num_splits, causal=True, ) ...

DeepSeek训练成本如此之低的两大关键

DeepSeek的成本涉及两项关键的技术:一个是MoE,一个就是MLA(多头潜注意力)。

其中,MLA的开发耗时数月,可将每个查询KV缓存量减少93.3%,显著减少了推理过程中的内存占用(在训练过程也是如此)。

MLA架构需要一些巧妙的设计,因此实现的复杂性大大增加。而DeepSeek成功地将这些技术整合在一起,表明他们在高效语言模型训练方面走在了前沿

多头潜注意力(MLA)

KV缓存是Transforme模型中的一种内存机制,用于存储表示对话上下文的数据,从而减少不必要的计算开销。

随着对话上下文的增长,KV缓存会不断扩大,从而造成显著的内存限制。

通过大幅减少每次查询所需的KV缓存量,可以相应减少每次查询所需的硬件资源,从而降低运营成本。

与标准注意力机制相比,MLA将每次查询所需的KV缓存减少了约93.3%。

MLA这种全新多头潜注意力,可以将注意力机制的内存占用减少大约80%到90%,尤其有助于处理长上下文

此外,由于H20芯片比H100具有更高的内存带宽和容量,DeepSeek在推理工作负载方面获得了更多效率提升。

除了MLA,DeepSeek其他突破性进展还有哪些?

训练(前期和后期)

不是「下一个token预测」,而是「多token预测」

DeepSeek V3以前所未见的规模实现了多Token预测(MTP)技术,这些新增的注意力模块可以预测接下来的多个Token,而不是传统的单个Token。

这显著提高了训练阶段的模型性能,且这些模块可以在推理阶段移除。

这是一个典型的算法创新案例,实现了在更低计算资源消耗下的性能提升。

其他方面,虽然DeepSeek在训练中采用了FP8精度,但像全球一些顶尖的实验室已经采用这项技术相当长时间了。

DeepSeek V3采用了我们常见的「混合专家模型」(MoE)架构,个由多个专门处理不同任务的小型专家模型组成的大模型,展现出强大的涌现能力。

MoE模型面临的主要挑战是,如何确定将哪个Token分配给哪个子模型(即「专家」)。

DeepSeek创新性地采用了一个「门控网络」(gating network),能够高效且平衡地将Token路由到相应的专家,同时保持模型性能不受影响。

这意味着路由过程非常高效,在训练过程中每个Token只需要调整小量参数(相较于模型整体规模)。

这既提高了训练效率,又降低了推理成本。

尽管有人担心MoE带来的效率提升,可能降低投资意愿,但Dario指出,更强大的AI模型带来的经济效益非常可观,任何节省的成本都会立即被投入到开发更大规模的模型中。

因此,MoE效率提升不会减少总体投资,反而会加速模型Scaling的进程。

当前,包括OpenAI、谷歌、Anthropic等一些公司正专注于扩大模型的计算规模,并提高算法效率。

V3打好了基础,RL立大功

对于R1而言,它极大地受益于其强大的基础模型——V3,这在很大程度上要归功于强化学习(RL)。

RL主要关注两个方面:格式化(确保输出连贯性)以及有用性与安全性(确保模型实用且无害)。

模型的推理能力,是在对合成数据集进行微调过程中自然涌现的,这与o1的情况类似。

值得注意的是,R1论文中并没有提及具体的计算量,因为披露使用的计算资源,会暴露DeepSeek实际拥有的GPU数量远超过其对外宣称的规模。

这种规模的强化学习需要庞大的计算资源,特别是在生成合成数据时。

谈到蒸馏,R1论文最引人注目的发现可能是,通过具有推理能力的模型输出来微调较小的非推理模型,使其获得推理能力。

数据集包含了约80万个样本,现在研究人员可以利用R1的思维链(CoT)输出创建自己的数据集,并借此开发具有推理能力的模型。

未来,我们可能会看到更多小模型展现出推理能力,从而提升小模型的整体性能。

参考资料:

https://x.com/deepseek_ai/status/1893836827574030466


“DeepSeek开源放大招:FlashMLA让H800算力狂飙!曝光低成本秘笈” 的相关文章

哈医大一院开辟Deepseek“看病问诊”新场景

哈医大一院开辟Deepseek“看病问诊”新场景

“Deepseek作为当下热点,尤其是在医疗场景下的部署应用,是医疗新质生产力的生动实践。”近日,哈尔滨医科大学附属第一医院深入贯彻落实国家“人工智能+医学”深度融合政策,积极推动人工智能AI技术在医...

赵满意:DeepSeek浪潮下AI大模型赋能产业发展

赵满意:DeepSeek浪潮下AI大模型赋能产业发展

5月10日,由中国企业改革与发展研究会主办,中企研数字经济与数据资产工作委员会、企业观察报社承办的央企AI+大模型应用论坛在北京举办。论坛上,华为技术有限公司北京昇腾创新中心负责人赵满意以《DeepS...

中国电信×DeepSeek 解锁教育创新密码

中国电信×DeepSeek 解锁教育创新密码

在教育领域不断追求突破与创新的当下,如何让知识更高效地传递,充分激发学生的无限潜能,成为了亟待解决的难题。中国电信接入DeepSeek,通过“智慧校园+DeepSeek”的组合,让传统校园摇身一变成为...

中关村论坛|医院部署DeepSeek专家共识发布

中关村论坛|医院部署DeepSeek专家共识发布

3月29日,在2025中关村论坛平行论坛——“医学 AI创新与发展论坛”上,《医疗机构部署DeepSeek专家共识》发布,系统规范了AI在医疗场景的部署流程,强调通过技术标准化与风险管控,提升诊疗精准...

这场科技盛会将启幕,为何DeepSeek让业内兴奋又“焦虑”

这场科技盛会将启幕,为何DeepSeek让业内兴奋又“焦虑”

“这次DeepSeek横空出世,让AI从业者既兴奋又‘焦虑’。”上海库帕思科技有限公司CEO黄海清认为,DeepSeek最核心的点在于技术创新,为中国大模型公司和产业的发展提供了一个较好的“换道超车”...

DeepSeek杀入金融科技圈

DeepSeek杀入金融科技圈

低成本、低门槛、高效能的优势,加之开源策略支持本地私有化部署,让DeepSeek在近期席卷金融科技圈,从国有大行、互联网大厂金融科技公司到消费金融公司、第三方支付机构、上市金融科技企业纷纷宣布接入De...